Network intrusion detection system: A machine learning approach

نویسندگان

  • Mrutyunjaya Panda
  • Ajith Abraham
  • Swagatam Das
  • Manas Ranjan Patra
چکیده

Intrusion detection systems (IDSs) are currently drawing a great amount of interest as a key part of system defence. IDSs collect network traffic information from some point on the network or computer system and then use this information to secure the network. Recently, machine learning methodologies are playing an important role in detecting network intrusions (or attacks), which further helps the network administrator to take precautionary measures for preventing intrusions. In this paper, we propose to use ten machine learning approaches that include Decision Tree (J48), Bayesian Belief Network, Hybrid Naïve Bayes with Decision Tree, Rotation Forest, Hybrid J48 with Lazy Locally weighted learning, Discriminative multinomial Naïve Bayes, Combining random Forest with Naïve Bayes and finally ensemble of classifiers using J48 and NB with AdaBoost (AB) to detect network intrusions efficiently. We use NSL-KDD dataset, a variant of widely used KDDCup 1999 intrusion detection benchmark dataset, for evaluating our proposed machine learning approaches for network intrusion detection. Finally, Experimental results with 5-class classification are demonstrated that include: Detection rate, false positive rate, and average cost for misclassification. These are used to aid a better understanding for the researchers in the domain of network intrusion detection. Key Words— Intrusion detection, Machine Learning, Cost Matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Assessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing

Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Intelligent Decision Technologies

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011